Dissociating the Roles of Delay and Probability Discounting in Gambling Behavior

Will Shead, Ph.D.
Emad Talisman, B.A. Hons.

Mount Saint Vincent University
Now or Later?

O How would you like a gift?

O **Now** vs. **1 week**
O Rewards now are worth more than later
 O Delayed rewards are *discounted*
Delay Discounting

Outcomes in future are **devalued** – make current options more attractive

Tendency varies across individuals
What’s your preference?

Which option do you prefer?:
(a) $995 now; (b) $1000 in 1 year
(a) $900 now; (b) $1000 in 1 year
(a) $800 now; (b) $1000 in 1 year
(a) $700 now; (b) $1000 in 1 year
(a) $600 now; (b) $1000 in 1 year
(a) $500 now; (b) $1000 in 1 year
(a) $400 now; (b) $1000 in 1 year
(a) $300 now; (b) $1000 in 1 year
(a) $200 now; (b) $1000 in 1 year
(a) $100 now; (b) $1000 in 1 year
(a) $50 now; (b) $1000 in 1 year
Delay Discounting Paradigm

- Decisions between smaller, immediate vs. larger, delayed rewards across several delays

- Switch point = Subjective value of delayed reward
 - E.g., How much $1000 in one year is worth to you right now
 - Smaller subjective values indicate greater degree of discounting
Individual subjective values for multiple delays can be plotted and fit a curve to the function:

\[v_d = \frac{V}{1 + kD} \quad \text{Note: } k = \text{rate of discounting} \]
Area Under Discounting Curve

- AUC calculated from actual data points rather than curve fit to data (theoretically-neutral) (Myerson, Green, & Warusawitharana, 2001)
- Greater degree (rates) of discounting = lower subjective values (i.e., smaller AUC = steeper discounting) – 0 → 1.0
$k = 0.013; \text{ AUC} = 0.27$

Steeper rate of discounting

$k = 0.0007; \text{ AUC} = 0.89$
Delayed Gratification

Oh, The Temptation
THE MARSHMALLOWS TEST
Delay Discounting & Gambling

PGs discount delayed rewards more steeply than controls

- Dixon et al. (2003)
- MacKillop et al. (2006)
- Petry (2001)
- Petry & Casarella (1999)
Delay Discounting & Gambling

- Problem gamblers prefer smaller, immediate rewards over larger, delayed rewards

- Why?
 - PGs discount long-term benefits of abstaining from gambling

- Highlights gambling’s function as a way to satisfy **immediate needs**
Callan, Shead, & Olson, 2011

- $N = 59$ students/staff at UWO (regular gamblers)
- Delay discounting paradigm
 - $\$1000 @ 7$ delays (1, 7, 30, 90, 180, 365, 730 days)
- Choice of $\$1$-$\5 cash / $\$1$-$\5 worth of instant win scratch tickets
 - 47% purchased at least one ticket ($M = 1.32$ tickets, $SD = 1.85$)
Results

<table>
<thead>
<tr>
<th>Measures</th>
<th>1.</th>
<th>2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tickets</td>
<td>-.50**</td>
<td>-</td>
</tr>
</tbody>
</table>
Evidence that steeper delay discounting predicts increased gambling in immediate context

Link btw desire for instant rewards & gambling
What about Probability Discounting?

- Similar to delay discounting but with uncertain (probabilistic) rewards
- We discount value of probabilistic rewards according to comparable mathematical function:
 \[v_d = \frac{V}{1 + h\Theta} \]

- Notes:
 - \(h \) = rate of probability discounting
 - \(\Theta \) = odds against receiving reward
What’s your preference?

Which option do you prefer?:
(a) $995 for sure; (b) 25% chance of $1000
(a) $900 for sure; (b) 25% chance of $1000
(a) $800 for sure; (b) 25% chance of $1000
(a) $700 for sure; (b) 25% chance of $1000
(a) $600 for sure; (b) 25% chance of $1000
(a) $500 for sure; (b) 25% chance of $1000
(a) $400 for sure; (b) 25% chance of $1000
(a) $300 for sure; (b) 25% chance of $1000
(a) $200 for sure; (b) 25% chance of $1000
(a) $100 for sure; (b) 25% chance of $1000
(a) $50 for sure; (b) 25% chance of $1000
Individual subjective values for multiple odds against can be plotted and fit a curve to the function:

\[v_d = \frac{V}{1 + h\Theta} \]

-Note: \(\Theta = \text{odds against} = \frac{1-p}{p} \)

![Probability Discounting of Rewards](image)

- **75%**
 \(\Theta = \frac{1-.75}{.75} = .33 \)

- **25%**
 \(\Theta = \frac{1-.25}{.25} = 3 \)

- **5%**
 \(\Theta = \frac{1-.05}{.05} = 19 \)
Summary of Gambling-Related Probability Discounting Research

- Theoretically linked to gambling
- Existing research
 - Shead et al. (2008) – no assoc btw. prob. discounting & PGSI scores
 - Holt et al. (2003) – gamblers lower h vs. non-gamblers
 - Madden et al. (2009) – PGs lower h vs. controls
Current Research Program

- Purpose: Clarify how tendencies towards each type of discounting relate to gambling behavior
 - How does discounting (including other types) relate to actual gambling behavior?
 - Can discounting be manipulated reliably?
 - Can changes to discounting impact gambling initiation and decisions?
Shead & Talisman (2013): Methods

- 51 university students with “gambling experience”
- Questionnaires: demographics, GAQ, PGSI
- 2 discounting tasks: 1) delay, 2) probability
- 1 of 2 gambling tasks - opportunity to gamble with $5
 - 1) Instant win scratch tickets (n = 26)
 - 2) Roulette game (n = 25)
Shead & Talisman (2013)
Sample Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender - Female</td>
<td></td>
<td></td>
<td>71%</td>
</tr>
<tr>
<td>PGSI Category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-problem (0)</td>
<td>41.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-risk gambler (1-2)</td>
<td>51.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate risk gambler (3-7)</td>
<td>7.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem gambler (8+)</td>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | | |
| **Age** | 22.2 | 4.7 | |

Gambling Activity (Past month)

Gambling Frequency	7.4	14.1	
Time Spent Gambling (hours)	4.6	8.9	
Money gambled	$51.40	$82.80	

$ spent out of $5 on tickets/roulette in session	$2.96	$1.91	
Scratch tickets	$3.52	$1.81	
Roulette	$3.24	$1.86	
Combined			
Results

- Degree of **delay discounting** related to self-reported recent gambling activity but **not** to gambling in session
- \uparrow delay discounting associated with more **time** spent gambling in past month
 - $r = .28, p = .04$
Results

- In contrast, degree of **probability discounting** was not related to self-reported gambling but was related to gambling within session*

 - Only for purchase of scratch tickets

- ↓ rates of probability discounting associated with purchase of more instant win scratch tickets in session

 - $r = -0.43$, $p = 0.03$
Results

- High proportion of Ps who either bought $5 or $1
 - No one bought 0 tickets
 - 11 bought 1 ticket
 - 2 bought 2 tickets
 - 1 bought 3 tickets
 - 1 bought 4 tickets
 - 11 bought 5 tickets

- Low purchasers: $M_{AUC} = .07$
- High purchasers: $M_{AUC} = .12$
 - $t(23) = 2.55, p = .018, d = 1.01$
Comparison of Probability Discounting Curves between Low ($1/$2) & High ($4/$5) Scratch Ticket Buyers

- Low Scratch Ticket Purchase ($1/$2)
- High Scratch Ticket Purchase $4/$5
Discussion

O Rates of probability and delay discounting related to different indicators of gambling

O Reflect *unique processes* involved in different aspects of gambling behavior
 O Delay discounting may relate to general tendency towards involvement in gambling (i.e., time spent)
 O Probability discounting may relate to decisions to gamble in immediate context
 O Moderated by type of gambling activity
Next Studies

- Explore strategies to change discounting rates (esp. probability discounting)
 - Impact on gambling in immediate context vs. prospective gambling
- Clinical vs. non-clinical samples
- Findings will help identify potential clinical applications
Thank you for your attention!

Additional thanks to:
- Mitch Callan, University of Essex
- Ontario Problem Gambling Research Centre
- Mount Saint Vincent University
- Grant Hatcher

For a copy of this presentation & references email:
Will.Shead@msvu.ca
References

References

- Petry, N. M. (2012). Discounting of probabilistic rewards is associated with gambling abstinence in treatment-seeking pathological gamblers. *Journal of Abnormal Psychology, 121*(1), 151-159.