The Economics of Lotto: Design, Income, and Problem Gambling in the UK

Rob Pryce*, Ian Walker+ and Rhys Wheeler +

* SCHARR, Sheffield University UK
+ Lancaster University Management School

Email ian.walker@lancaster.ac.uk for slides
1. How much do we love Lotto? (Rhys)
 • We are agnostic on why people play
 • Call it “fun”. Lots of it - £1b pa (£5b sales)

2. But lotto is highly “taxed” (Rob)
 • And its highly regressive
 • More than most “sin” taxes
 • Tax spoils a quarter of the fun (£½b pa)

3. Problem gambling? (Me)
 • We attempt to place a value on this
 • £5.5b pa “upper bound” for DSM PG
 • £1.2b pa “upper bound” for PGSI PG
Outline of Act 1

• Provide a simple analytical model of lotto
 — Estimate this on 200+ draws of UK lotto
• Focus on estimating causal effect of “price”
 — And overall shape of prize distribution
• Find backward looking behaviour
 — Strong “habituation” => LR effect > SR effect
 • Addiction?
• Infer “fun” from estimated “price elasticity”
 — Calculate lost fun due to lotto takeout
Lotto background

• UK context
 – GGY is about $20b ≈ $400 pppa
 • Lotteries most prevalent form of gambling
 • NL accounts for about $5b of GGY in UK

• Lotto is a distinctive form of lottery
 – Pari-mutuel

• Pick your own numbers
 – Allows for “conscious selection”

• “Rollovers” occur
 – More so because of conscious selection
 – Generates spikes in sales
General structure of lotto games

• Each player chooses (or Lucky Dips) n from N
• Prize pools shared by all players who match, n balls (jackpot), $n-1$, etc.
 – If no n-ball winner at $t-1$ then J_{t-1} added to J_t
 – Multiple rollovers possible
• Game design - n, N, takeout rate, prize pools
 – Design (given S) determines $\text{Prob}(R>0)$
• Game design implies P, R and S related
 – $P(R,S)$: focus here on P, rather than R directly
P, S and R

• *Peculiar* economies of scale (Clotfelter and Cook *AER* 1993)
 – Higher S, lowers rollover prob
 • Raises current value of ticket (so reduces P)
 – asymptotes to take-out rate (≈½) from below
 – So P asymptotes to ½ from above

• Rollover draws (Walker *Econ Policy* 1999)
 – J_t includes J_{t-1} - like adding a “raffle” prize in t
 • Raffle prizes are fixed (don’t depend on S_t)
 – But if $R_t>0$, then J_{t-1} **worth** less the higher is S_t
 • Because higher S_t lowers chance of winning J_{t-1}
P(R,S) relationship for 6/49

• P(0,S) tends to ½ from above
• But rollovers shifts P down
 — P(8,S) and P(4,S)
 — tend to ½ from below
• Rollover changes P, at any given S
 — Price elasticity
UK Lotto (pre 2014)

• Sticker price £1, 35k outlets, twice weekly
 – \(n = 6, \, N = 49, \, \tau \approx \frac{1}{2} \)
 • Tax (12%) + “good causes” (28%) + costs (10%)
 – Winnings tax free! Paid as lump sum!
 – Prob matching 6 is \(\frac{n!}{N!(N-n)!} \approx \frac{1}{14m} \)

• UK game also has 5+B, 5, 4 ball prize pools
 – 3-ball fixed prize, not a pool - £10 (Prob \(\approx 2\% \))

• Jackpot
 – \(\approx \frac{1}{2} (S/2 + \text{rollover} - 10.w_3) \)

• Wed rolls over into next Sat and vice versa
Statistical method

• Existing research estimates simple models
 \[S_t = a + b \cdot P_t + \text{otherstuff}_t \]
 • Estimate for Weds and Sats separately
 • Expect \(b < 0 \)
 • Otherstuff\(_t\) includes \(S_{t-1} \)

• Take-out from draw \(t \) depends on
 • Take-out rate, \(\tau \) - fixed
 • Rollover size, \(R_t \) – depends on \(S_{t-1} \)

• Use other determinants of \(R_t \)
 • As source of exogenous variation in \(P_t \)
 • Unexpected variation in number of 3 ball winners
 • Small and medium numbers in winning n
Lotto is lots of “fun”

- D shows “willingness to pay”
- Actually “pay” \(P = \frac{1}{2} \)
- \(S \approx 40 \text{m} \ (20 \text{m}) \) per draw
 - £3b pa
- MC = 0.1
- \(\text{Slope}_{LR} \approx -0.02 \ (-0.015) \)
- Fun = CS = £16m (3m)
 - £1b pa
- Tax \(\approx £16m \ (8m) \)
- Lost fun = DWL \(\approx £4m \ (2\frac{1}{2}m) \)
 - Tax spoils £\(\frac{1}{3} \)b pa of the fun
Act 1 Conclusion

• Bigger estimated P effects Weds than Sat

Long run \(\varepsilon_{\text{Sat}} \approx -\frac{2}{3} \) (0.05), \(\varepsilon_{\text{Wed}} \approx -1\frac{1}{2} \) (0.13)

• Set \(\tau \) to ensure that \(\varepsilon = -1 \) to max revenue
 – So “money left on the table”
 • So raise Wed’s prizes at expense of Sat’s

• Exactly what UK operator did (2013/15)
 – Added large raffle prizes to both draws
 – But these are worth more on Weds than Sats

• Not yet enough data to see if this has worked

• QUESTIONS?
Outline of Act 2

- Taxes on “sin” popular with governments
 - Moral high ground
- Taxing a “necessity” is regressive
 - So poor bear a larger tax burden than rich
 - Determined by “income elasticity” of D, \(\eta \)
 - “Impact of a 1% rise in income on demand
 - Estimate this using data on purchases and income
- Estimate how demand varies with income
 - “Luxury” good, \(\eta > 1 \)
 - Budget share rises with income (entertainment)
 - “Necessity”, \(0 < \eta \leq 1 \)
 - Budget share falls with income (food, fuel)
Background

• “Incidence” of “tax” on lotto
 – Is tax regressive?
 – Estimate relationship between D and income
• We have 13 years of UK FES data (2001-13)
 – Huge and detailed survey - 69k hh in our data
 – Important feature of data is lots of zeroes
• “Parametric” model
 – \[\text{Lottoshare}_h = c + d \cdot \log(\text{Totexp}_h) + \text{other stuff}_h \]
 – Simple way of incorporating zeroes (Tobit)
FES vs NL data

- FES lotto spending tracks NL series OK – 30% under reporting
- But OK – Methodology robust to ME in demand
Spending patterns in FES data (weekly)
Engle curves

- Standard parametric specification
 \[\text{Lottoshare}_h = c + d \cdot \text{Log (Totexp}_h) + \text{other stuff}_h \]
 - Nice: \(\eta = (d/\text{Lottoshare})^{-1} \)
 - Easy: linear regression

- Many households have zero lotto share
 - "Tobit" and extensions rather than regression

- Results
 - Tobit \(- 0.0027 (0.0001)\)

- Semi-parametric analysis
 - Implement a SP version of Tobit?
Act 2 Conclusion

- So $\eta = 1 + (-0.0027/0.006) \approx 0.6 < 1$
 - suggests lottery tax is regressive
- Suits (AER 1973) regressivity index
 - $SI = L/T$
- Lotto 0.36
- Gambling 0.32
- Alcohol 0.13
- Tobacco 0.42
- QUESTIONS?
Outline of Act 3

• “Problem” gambling usually defined by aggregating responses to a questionnaire
 – PG = 1 if score exceeds critical value
 – DSM and PGSI

• Allows us to count the number of PGs
 – But what does PG “cost” to someone with PG?

• Can we improve the way that PG is defined?
• Can we improve on our estimates?
Problem Gambling in UK

- PG defined in UK GPS 2010 (and later HSE)
 - PGSI > 7 = 0.63% (of 46 m popn = 290k people)
 - DSM > 2 = 0.83% (of 46 m popn = 380k people)
Well-being in GPS

• UK 2010 GPS records “well-being” (W)
 – “How happy would you say you are these days”
• UK 2010 only GPS to do this
 – W not in HSE
 – Nor in other GPS’s
• W widely used to value life events
 – Divorce
 – Marriage
 – Unemployment
 – And, now, PG
Well-being in GPS

- W falls as PG score rises
 - For both DSM and PGSI
 - But neither have a step down at the critical value
Income in GPS

• GPS records income
 – in £5k “bins”
• Income makes you happier
 – If you don’t have much
• Use log Income
 – Rather than income
PG money metric

• Our methodology increasingly common
 – Estimate W vs Log Income and “event”
 • Event, in this case, is $PG=1$
 – $W_i = e + f \cdot PG_i + g \cdot \text{Log Income}_i + \text{otherstuff}_i$
 • Log income is grouped – replace by a prediction from an integer regression
 – $f (<0)$ tells us how much less W is for $PG=1$ vs 0
 – $g (>0)$ tells us effect of doubling income on W
 – So $f/g \equiv \% \Delta$ income that makes $W_{PG=1} = W_{PG=0}$
PG money metric

- \(f/g \equiv \% \Delta \text{ income that makes } W_{PG=1} = W_{PG=0} \)
- For DSM
 - \(f = -1.38, \quad g = 2.65 \Rightarrow f/g = -0.52 \)
 - \(PG_{dsm} = 1 \Rightarrow \text{Loss in } W \text{ (pa)} \approx -£ 9 \text{ k} \)
- For PGSI
 - \(f = -0.40, \quad g = 2.62 \Rightarrow f/g = -0.15 \)
 - \(PG_{pgsi} = 1 \Rightarrow \text{Loss in } W \text{ (pa)} \approx -£ 2.5 \text{ k} \)
- Aggregate
 - \(\Delta W_{pgsi} = -£ 0.75 \text{ b} \)
 - \(\Delta W_{dsm} = -£ 3.5 \text{ b} \)
Causal effect

• Our regression estimate of f is likely to be biased because of measurement error in PG
 – Downwards (attenuated towards 0)
 – Exploit the second PG measure. Then, we get
 $-\Delta W_{pgsi} = -£1.2$ b or $\Delta W_{dsm} = -£5.5$ b

• But f also biased because of simultaneity
 – Unhappy people gamble more
 – Upwards – so estimates above are “upper bounds”
 – More difficult in this case – working on it
Act 3 Conclusion

• Conventional measures of PG associated with large/huge reductions in well-being
• Conventional definitions probably flawed
 – So who knows what the right answer is?
 – Ours is an upper bound on true answer
• Well-being data offers the possibility of
 – Designing better questions
 – And better, data-driven, aggregation of answers
 – To get a more defensible PG scale
Take away

• Lotto is a £1b of fun pa
 – But taxation reduces the fun by close to 50%

• And the tax is highly regressive

• PG may be a large problem
 – Small % of (a large number of) people
 – Method for “valuing” PG
 • Different values for two popular (similar) measures
 – Either huge (at most £5.5b)
 – or just large (at most £1.2b)
 – But these are “upper bounds”

• QUESTIONS?
Questions?

• Unanswered questions
 – Does lotto cause more/less PG? Working on it!
 – Does lotto good-causes spending do any good?
 • Not yet working on this!
 – Scouts, Opera House, Olympic medals, “Warm glow”
 – Can we improves estimates? Working on it!

• If you want the paper(s), or these slides?
 – Email ian.walker@lancaster.ac.uk

• If you have hard questions?
 – We can talk later ... in the bar?

• And if you have cool data for us
 – Then we’re buying the drinks