Estimating Kelly Fraction
Gambling & Risk Taking
Las Vegas

William Chin Marc Ingenoso

DePaul University
Conger Asset Management, Chicago

June 9, 2016
Diffusion Model

Estimating \hat{F}

Estimating $\hat{\sigma}^2_F$

Warren Buffett

Further Work
Geometric Brownian Motion

F times Kelly betting is modeled by

\[dB = \left(F \frac{\mu}{\sigma^2} \right) \mu B dt + \left(F \frac{\mu}{\sigma^2} \right) \sigma B dW \]
Geometric Brownian Motion

F times Kelly betting is modeled by

$$dB = (F \frac{\mu}{\sigma^2})\mu Bdt + (F \frac{\mu}{\sigma^2})\sigma BdW$$

- F is the fraction of the full Kelly bet and
Geometric Brownian Motion

F times Kelly betting is modeled by

\[dB = \left(F \frac{\mu}{\sigma^2} \right) \mu B dt + \left(F \frac{\mu}{\sigma^2} \right) \sigma B dW \]

- \(F \) is the fraction of the full Kelly bet and
- \(\mu \) is the “edge“ and \(F \frac{\mu}{\sigma^2} B \) is the “bet size“
Geometric Brownian Motion

F times Kelly betting is modeled by

\[dB = \left(F \frac{\mu}{\sigma^2} \right) \mu B dt + \left(F \frac{\mu}{\sigma^2} \right) \sigma B dW \]

- \(F \) is the fraction of the full Kelly bet and
- \(\mu \) is the "edge" and \(F \frac{\mu}{\sigma^2} B \) is the "bet size"
- \(W \) is standard Wiener Process
Geometric Brownian Motion

F times Kelly betting is modeled by

\[dB = \left(F \frac{\mu}{\sigma^2} \right) \mu B dt + \left(F \frac{\mu}{\sigma^2} \right) \sigma B dW \]

- \(F \) is the fraction of the full Kelly bet and
- \(\mu \) is the “edge“ and \(F \frac{\mu}{\sigma^2} B \) is the “bet size“
- \(W \) is standard Wiener Process
- \(F \) corresponds to a utility function
Geometric Brownian Motion

F times Kelly betting is modeled by

\[dB = \left(F \frac{\mu}{\sigma^2} \right) \mu B dt + \left(F \frac{\mu}{\sigma^2} \right) \sigma B dW \]

- \(F \) is the fraction of the full Kelly bet and
- \(\mu \) is the “edge“ and \(F \frac{\mu}{\sigma^2} B \) is the “bet size“
- \(W \) is standard Wiener Process
- \(F \) corresponds to a utility function

Letting \(\theta = \frac{\mu}{\sigma} \) we have

\[dB = (F \theta^2) B dt + (F \theta) B dW \]
Itoh’s Lemma:

\[\frac{dB}{B} = F\theta^2 dt + F\theta dW \]

yields

\[d\ln B = (F - \frac{1}{2}F^2)\theta^2 dt + F\theta dW \]
Diffusion Model

Estimating F

Estimating σ^2_F

Warren Buffett

Further Work
Estimating F

$$\rho = \left(F - \frac{1}{2} F \right)^2$$

and solving for F yields

$$F = \frac{2 \Sigma \rho}{2 \Sigma + \Sigma}$$
Estimating F

Set $\rho = (F - \frac{1}{2} F^2) \theta^2$ and
Estimating F

- Set $\rho = (F - \frac{1}{2}F^2)\theta^2$ and
- $\Sigma = F\theta$
Estimating F

- Set $\rho = (F - \frac{1}{2}F^2)\theta^2$ and
- $\Sigma = F\theta$
- solving for F yields

$$F = \frac{2\Sigma^2}{2\rho + \Sigma^2}$$
In order for our estimate to be useful in practice we need some idea of its statistical variability. Assume that for times t_0, t_1, \cdots, t_N we know the bankrolls B_0, B_1, \cdots, B_N. Define $\Delta B_k = B_k - B_{k-1}$ and $\Delta t_k = t_k - t_{k-1}$.
We use standard estimators for the parameters ρ and $\Sigma^2 = \text{Var} (\ln (B))$:

$$R = \frac{\ln (B_N) - \ln (B_0)}{t_N - t_0}$$

$$v = \frac{\sum_{k=1}^{N} [\ln (B_k) - \ln (B_{k-1}) - \Delta t_k R]^2}{t_N - t_0}$$
Estimating F

Our estimator for the Kelly fraction F is

$$\hat{F} = \frac{2v}{2R + v}$$

We estimate its standard deviation next.
Diffusion Model

Estimating F

Estimating σ_F^2

Warren Buffett

Further Work
Estimating $\sigma^2_{\hat{F}}$

Taylor approximation of $\sigma^2_{\hat{F}}$

$$\approx \left| \frac{\partial F}{\partial R} \right|^2 \sigma^2_R + \left| \frac{\partial F}{\partial v} \right|^2 \sigma^2_v$$
Estimating $\sigma_\hat{F}^2$

Taylor approximation of $\sigma_\hat{F}^2$

$$\approx \left| \frac{\partial F}{\partial R} \right|^2 \sigma_R^2 + \left| \frac{\partial F}{\partial v} \right|^2 \sigma_v^2$$

$$= \left| \frac{-v}{(2R + v)^2} \right|^2 \left(\frac{v}{t_N - t_0} \right)$$
Estimating $\sigma^2_{\hat{F}}$

Taylor approximation of $\sigma^2_{\hat{F}}$

\[\approx \left| \frac{\partial F}{\partial R} \right|^2 \sigma_R^2 + \left| \frac{\partial F}{\partial v} \right|^2 \sigma_v^2\]

\[= \left| \frac{-v}{(2R + v)^2} \right|^2 \left(\frac{v}{t_N - t_0} \right)\]

\[+ \left| \frac{R}{(2R + v)^2} \right|^2 \left(\frac{2v^2}{(t_N - t_0)^2} \sum_{k=1}^{N} \left(\Delta t_k \right)^2 \right)\]
Estimating $\sigma^2_{\hat{F}}$

Taylor approximation of $\sigma^2_{\hat{F}}$ with N equal time intervals
Estimating $\sigma^2_\hat{F}$

Taylor approximation of $\sigma^2_\hat{F}$ with N equal time intervals

$$\frac{\nu^3 + 2R^2 \nu^2}{N(R + \frac{1}{2} \nu)^4}$$
Diffusion Model

Estimating F

Estimating σ^2_F

Warren Buffett

Further Work
E. Thorp (2006) and W. Ziemba (2003) say that Warren Buffett seems to be a Full Kelly bettor. We find a Kelly Fraction of $F = .26 \pm .09$ ($\alpha = .05$) for closing prices 1980-present.
Diffusion Model

Estimating F

Estimating σ^2_F

Warren Buffett

Further Work
Methods in discrete time