Document Type

Conference Proceeding

Publication Date

12-17-2018

Publication Title

22nd International Conference on Principles of Distributed Systems (OPODIS 2018)

Publisher

Schloss Dagstuhl – Leibniz Center for Informatics

Publisher Location

Hong Kong, China

First page number:

1

Last page number:

16

Abstract

Self-stabilizing and silent distributed algorithms for token distribution in rooted tree networks are given. Initially, each process of a graph holds at most l tokens. Our goal is to distribute the tokens in the whole network so that every process holds exactly k tokens. In the initial configuration, the total number of tokens in the network may not be equal to nk where n is the number of processes in the network. The root process is given the ability to create a new token or remove a token from the network. We aim to minimize the convergence time, the number of token moves, and the space complexity. A self-stabilizing token distribution algorithm that converges within O(n l) asynchronous rounds and needs Theta(nh epsilon) redundant (or unnecessary) token moves is given, where epsilon = min(k,l-k) and h is the height of the tree network. Two novel ideas to reduce the number of redundant token moves are presented. One reduces the number of redundant token moves to O(nh) without any additional costs while the other reduces the number of redundant token moves to O(n), but increases the convergence time to O(nh l). All algorithms given have constant memory at each process and each link register.

Keywords

Token distribution; Self-stabilization; Constant-space algorithm

Disciplines

Computer Sciences

File Format

pdf

File Size

620 KB

Language

English

Creative Commons License

Creative Commons Attribution-Noncommercial 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License

UNLV article access

Share

COinS