Title

Self-stabilization in tree-structured peer-to-peer service discovery systems

Document Type

Conference Proceeding

Publication Date

1-1-2008

Publication Title

Symposium of Reliable Distributed Systems

First page number:

207

Last page number:

216

Abstract

The efficiency of service discovery is critical in the development of fully decentralized middleware intended to manage large scale computational grids. This demand influenced the design of many peer-to-peer based approaches. The ability to cope with the expressiveness of the service discovery was behind the design of a new kind of overlay structures that is based on tries, or prefix trees. Although these overlays are well designed, one of their weaknesses is the lack of any concrete fault tolerant mechanism, especially in dynamic platforms; the faults are handled by using preventive and costly mechanisms, e.g., using a high degree of replication. Moreover, those systems cannot handle any arbitrary transient failure. Self-stabilization, which is an efficient approach to design reliable solutions for dynamic systems, was recently suggested to be a good alternative to inject faulttolerance in peer-to-peer systems. However, most of the previous research on self-stabilization in tree and/or P2P networks was designed in theoretical models, making these approaches hard to implement in practice. In this paper, we provide a self-stabilizing message passing protocol to maintain prefix trees over practical peerto-peer networks. A complete correctness proof is provided, as well as simulation results to estimate the practical impact of our protocol.

Language

english

UNLV article access

Share

COinS