"Sliding Observer and Adaptive Control of Robot Manipulators Using Join" by Sahjendra N. Singh and Woosoon Yim
 

Sliding Observer and Adaptive Control of Robot Manipulators Using Joint Position Feedback

Document Type

Conference Proceeding

Publication Date

12-15-1993

Publication Title

Proceedings of the 32nd IEEE Conference on Decision and Control

Publisher

IEEE

Volume

1

First page number:

138

Last page number:

141

Abstract

This paper considers control of rigid robot manipulators with revolute joints in the absence of knowledge of the robot model physical parameters using only joint angular position feedback. A sliding mode observer is constructed to estimate the joint angular velocities. An adaptive estimation and control law is derived such that in the closed-loop system, the tracking error and the state estimation error asymptotically converge to zero. The adaptive controller includes a dynamic system in the feedback path and requires no knowledge of the robot's dynamics in its derivation.

Keywords

Adaptive control; Closed loop systems; Feedback; Position control; Robots; State estimation; Variable structure systems

Disciplines

Controls and Control Theory | Electrical and Computer Engineering | Electrical and Electronics | Engineering | Signal Processing | Systems and Communications

Language

English

Permissions

Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library

Share

COinS