Mass Reconstruction Methods for PM2.5: A Review
Document Type
Article
Publication Date
5-7-2015
Publication Title
Air Quality, Atmosphere & Health
Volume
8
Issue
3
First page number:
243
Last page number:
263
Abstract
Major components of suspended particulate matter (PM) are inorganic ions, organic matter (OM), elemental carbon (EC), geological minerals, salt, non-mineral elements, and water. Since oxygen (O) and hydrogen (H) are not directly measured in chemical speciation networks, more than ten weighting equations have been applied to account for their presence, thereby approximating gravimetric mass. Assumptions for these weights are not the same under all circumstances. OM is estimated from an organic carbon (OC) multiplier (f) that ranges from 1.4 to 1.8 in most studies, but f can be larger for highly polar compounds from biomass burning and secondary organic aerosols. The mineral content of fugitive dust is estimated from elemental markers, while the water-soluble content is accounted for as inorganic ions or salt. Part of the discrepancy between measured and reconstructed PM mass is due to the measurement process, including: (1) organic vapors adsorbed on quartz-fiber filters; (2) evaporation of volatile ammonium nitrate and OM between the weighed Teflon-membrane filter and the nylon-membrane and/or quartz-fiber filters on which ions and carbon are measured; and (3) liquid water retained on soluble constituents during filter weighing. The widely used IMPROVE equations were developed to characterize particle light extinction in U.S. national parks, and variants of this approach have been tested in a large variety of environments. Important factors for improving agreement between measured and reconstructed PM mass are the f multiplier for converting OC to OM and accounting for OC sampling artifacts.
Keywords
PM2.5; Mass Closure; Chemical speciation; Organic matter; Sampling artifact
Repository Citation
Chow, J. C.,
Lowenthal, D. H.,
Chen, L. A.,
Wang, X.,
Watson, J. G.
(2015).
Mass Reconstruction Methods for PM2.5: A Review.
Air Quality, Atmosphere & Health, 8(3),
243-263.
http://dx.doi.org/10.1007/s11869-015-0338-3