Calibration of microscopic traffic flow simulation models using a memetic algorithm with solis and wets local search chaining (MA-SW-Chains)

Document Type

Conference Proceeding


Traffic models require calibration to provide an adequate representation of the actual field conditions. This study presents the adaptation of a memetic algorithm (MA-SW-Chains) based on Solis and Wets local search chains, for the calibration of microscopic traffic flow simulation models. The effectiveness of the proposed MA-SW-Chains approach was tested using two vehicular traffic flow models (McTrans and Reno). The results were superior compared to two state-of-the-art approaches found in the literature: (i) a single-objective genetic algorithm that uses simulated annealing (GASA), and (ii) a stochastic approximation simultaneous perturbation algorithm (SPSA). The comparison was based on tuning time, runtime and the quality of the calibration, measured by the GEH statistic (which calculates the difference between the counts of real and simulated links). © Springer International Publishing AG 2016.


Calibration; Local search chaining; Memetic algorithm; Single-objective optimization; Solis and wets; Traffic flow simulation

UNLV article access