Simultaneous Bioprecipitation of Cadmium to Cadmium Sulfide Nanoparticles and Nitrogen Fixation by Rhodopseudomonas Palustris TN110

Document Type


Publication Date


Publication Title




First page number:


Last page number:



This study investigated the abilities of a purple non-sulfur bacterium, Rhodopseudomonas palustris TN110 to bioremediate cadmium through the biosynthesis of CdS nanoparticles and to fix nitrogen simultaneously. Under microaerobic-light conditions, R. palustris TN110 synthesized CdS nanoparticles. The produced CdS nanoparticles had a spherical shape and an average size of 4.85 nm. The Fourier transform infrared spectrum of the nanoparticles reveals the carbonyl groups, bending vibrations of the amide I and II bands of proteins, and CN stretching vibrations of aromatic and aliphatic amines. These bands and groups suggest protein capping/binding on the surface of the nanoparticles. R. palustris TN110 converted 25.61% of 0.2 mM CdCl2 to CdS nanoparticles under optimal conditions (pH 7.5, 30 °C and 3000 lux). The half maximal inhibitory concentration (IC50) value of the produced CdS nanoparticles was 1.76 mM. The produced CdS nanoparticles at IC50 up-regulated two genes associated with nitrogen fixation: Mo-Fe nitrogenase gene (nifH) and V-Fe nitrogenase gene (vnfG) at 2.83 and 2.27 fold changes, respectively. On the contrary, the produced CdS nanoparticles slightly down-regulated Fe-Fe nitrogenase gene (anfG). The amounts of ammonia released by the strain support the gene expression results. R. palustris TN110 has great potential to serve concurrently as a cadmium bioremediation agent and a nitrogen fixer. The strain could be beneficial to paddy fields that are contaminated with Cd through run off from mining and chemical fertilizer applications.


Bioprecipitation; Cadmium sulfide nanoparticle; Cysteine desulfhydrase; Nitrogenase; Purple non-sulfur bacteria


Civil and Environmental Engineering



UNLV article access

Search your library