Assessing the energy requirements and global warming potential of the production of rare earth elements

Document Type

Article

Publication Date

1-1-2016

Publication Title

Journal of Cleaner Production

Volume

139

First page number:

1282

Last page number:

1297

Abstract

The rare earth elements (REE) play an indispensable role in modern technology, especially in wind turbines, or as phosphors, catalysts, specialty alloys and others. Despite the benefits of REE, there has been minimal research assessing the environmental impacts of REE mining. Here, we present a “cradle to gate” scale life cycle impact assessment for 26 operating and potential REE mining projects, focusing on the gross energy requirement and the global warming impacts of the primary REE production stage. The results suggest that the declining ore grades of REE significantly increase the environmental impact of REE production. On a unit basis (such as GJ/t-metal or kg CO2e/t-metal), REE production causes higher environmental impacts than common metals (e.g. Cu, bauxite, and steel), with the refining stage being responsible for the greatest proportion of these impacts. Changing the REE production configuration could lead to diverse environmental footprints associated with each project. © 2016 Elsevier Ltd

Keywords

Environmental impacts; Life cycle impact assessment; Mine production; Rare earth elements

Language

English

UNLV article access

Search your library

Share

COinS