Document Type


Publication Date



The subject task entitled “Hydrogen-Induced Embrittlement of Candidate Target Materials for Applications in Spallation-Neutron-Target Systems” had commenced during the quarter ending on August 31, 2001. A research account has been established, contracts for both faculty and students have been prepared, and efforts are well underway to embark on the related research activities, as proposed.

As the title of this project implies, the primary objective of this task is to evaluate the effect of hydrogen on environment-assisted cracking of candidate materials for applications in spallationneutron- target (SNT) systems such as accelerator production of tritium (APT) and accelerator transmutation of waste (ATW). The materials selected for evaluation and characterization are martensitic stainless steels including HT-9, EP 823 and 422. The susceptibility to stress corrosion cracking (SCC) and hydrogen embrittlement (HE) of these alloys will be evaluated in environments of interest using tensile specimens under constant load and slow-strain-rate (SSR) conditions. The extent and morphology of cracking of these alloys will further be evaluated by optical microscopy and scanning electron microscopy (SEM). The concentration of hydrogen resulting from cathodic charging will be analyzed by secondary ion mass spectrometry (SIMS).


Hydrogen; Martensitic stainless steel – Cracking; Materials – Cracking; Metals — Effect of high temperatures on; Particle accelerators; Radioactive wastes — Transmutation; Spallation (Nuclear physics); Stress corrosion; Tritium


Materials Science and Engineering | Metallurgy | Nuclear Engineering | Oil, Gas, and Energy