Document Type

Report

Publication Date

3-2005

Abstract

The U.S. Advanced Fuel Cycle Initiative (AFCI) is a program to develop economic and environmental methods to reduce the impact of waste from commercial nuclear fuel cycles. One concept for near-complete destruction of waste isotopes from used nuclear fuel is accelerator driven transmutation. High-power accelerators would be used to produce high-energy charged particles, which then collide with heavy metal targets to create a cascade of neutrons. These neutrons then cause a nuclear chain reaction in subcritical systems. Fission neutrons then transmute fissile waste isotopes as well as other problematic isotopes such as technetium-99 and iodine-129. To design these systems, complex reactor physics computer codes and highly detailed data libraries are used to compute the reactivity of systems, reaction rates, destruction rates, and nuclear-induced damage rates to materials. This project was developed to test a Russian-built Neutron Multiplicity Detector System (NMDS) for measuring neutrons generated in a central target by a variety of accelerators. To assist in experiment design and evaluation, we use the most advanced high energy radiation transport code, MCNPX, to model experiments. Experimental results are compared to computational predictions and discrepancies are investigated. Initial plans were to conduct experiments using a 70-MeV proton cyclotron at the Crocker Nuclear Laboratory at the University of California at Davis and/or a 20 to 40 MeV electron linac (linear accelerator) at the Idaho Accelerator Center (IAC) at Idaho State University (ISU). Finally, we planned to use the 800-MeV linac at the Los Alamos Neutron Science Center at Los Alamos National Laboratory.

Keywords

Accelerator-driven systems; Particle accelerators; Radioactive wastes — Transmutation; Spent reactor fuels

Disciplines

Nuclear | Nuclear Engineering | Oil, Gas, and Energy

Language

English


Share

COinS