Document Type

Annual Report

Publication Date


First page number:


Last page number:



The recovery of iodine released during the processing of used nuclear fuel poses a significant challenge to the transmutation of radioactive iodine. During the first year of this program we have examined the potential of Fullerene Containing Carbon compounds (FCC) developed by KRI, and natural organic matter (NOM) as sorbents for iodine released during the reprocessing of nuclear fuel. This work involved the development of bench-scale testing of the FCC and NOM material in a simulated process off-gas environment.

During the first two quarters of this program we explored various analytical methods available for measurement of iodine, iodide, and iodate. We reproduced an analytical method proposed by Mishra et al., 2000 for measurement of trace levels of iodide and iodine in aqueous solution. Iodine or hypoiodic acid reacts with N,N-dimethylanaline to form p-iododimethylaniline. Iodide can be measured after selective oxidation of iodide with 2-iodosobenzoate to produce active iodine that is subsequently reacted with N,Ndimethylaniline. The product p-iodo-N,N-dimethylaniline can be quantified by GC/MS. This method gave excellent results in dilute aqueous solutions however; we did encounter some interference in the presence of NOM. The method should still be useful for quantifying low levels on iodine released by FCC or other sorbent materials.


Fullerenes; Iodine — Isotopes; Organic compounds; Radioactive wastes; Reactor fuel reprocessing; Sequestration (Chemistry); Sorbents; Transmutation (Chemistry)

Controlled Subject

Fullerenes; Iodine--Isotopes; Radioactive wastes


Analytical Chemistry | Chemistry | Oil, Gas, and Energy | Physical Chemistry

File Format


File Size

210 KB




COPYRIGHT UNDETERMINED. For more information about this rights statement, please visit