The effects of ankle braces and taping on lower extremity running kinematics and energy expenditure in healthy, non-injured adults

Document Type

Article

Publication Date

1-1-2017

Publication Title

Gait and Posture

Volume

58

First page number:

108

Last page number:

114

Abstract

Ankle braces and taping are commonly used to prevent ankle sprains and allow return to play following injury, however, it is unclear how passive restriction of joint motion may effect running gait kinematics and energy expenditure during exercise. The purpose of this study was to determine the effect of different types of ankle supports on lower extremity kinematics and energy expenditure during continuous running. Thirteen healthy physically active adults ran at self-selected speed on the treadmill for 30 min in four different ankle support conditions: semi-rigid hinged brace, lace-up brace, tape and control. Three-dimensional lower extremity kinematics and energy expenditure were recorded every five minutes. The semi-rigid hinged brace was most effective in restricting frontal plane ankle motion. The lace-up brace and tape restricted sagittal plane ankle motion, while semi-rigid hinged bracing allowed for normal sagittal plane ankle kinematics. Kinematic changes from all three ankle supports were generally persistent through 25–30 min of exercise. Only tape influenced knee kinematics, limiting flexion velocity and flexion-extension excursion. Small but significant increased in energy expenditure was found in tape and semi-rigid hinged brace conditions; however, the increases were not to any practically significant level (<0.5 kcal/min). © 2017 Elsevier B.V.

Language

english

UNLV article access

Search your library

Share

COinS