Inference of Genetic Forces Using a Poisson Random Field Model with Non-Constant Population Size
Document Type
Article
Publication Date
3-18-2019
Publication Title
Journal of Statistical Planning and Inference
Volume
2013
First page number:
57
Last page number:
69
Abstract
Aligned DNA sequences have been widely used for quantitatively analyzing and interpreting evolutionary processes. By comparing the information between intraspecific polymorphism with interspecific divergence in two sibling species, Poisson random field (PRF) theory offers a statistical framework with which various genetic parameters such as natural selection intensity, mutation rate and speciation time can be effectively estimated. A recently developed time-inhomogeneous PRF model has reinforced the original method by removing the assumption of stationary site frequency, but it keeps the assumption that the two sibling species share same effective population size with their ancestral species. This paper explores a relaxation of this biologically unrealistic assumption by hypothesizing that each of the two descendant species experienced a sudden change in population size at the times of the divergence from their most recent common ancestor. The newly developed PRF model with non-constant population size is applied to a set of 91 genes in African population of Drosophila to make statistical inference of the various genetic parameters under a hierarchical Bayesian framework and carried out with a multi-layer Markov chain Monte Carlo sampling scheme. In order to meet the intensive computational demand, a R program is integrated with C++ code and a parallel executing technique is designed to run the program with multiple CPU cores.
Keywords
Population genetics; Poisson random field; Selective effect; Effective population size; Hierarchical Bayesian model
Disciplines
Biostatistics | Genetics | Population Biology | Statistics and Probability
Language
English
Repository Citation
Amei, A.,
Xu, J.
(2019).
Inference of Genetic Forces Using a Poisson Random Field Model with Non-Constant Population Size.
Journal of Statistical Planning and Inference, 2013
57-69.
http://dx.doi.org/10.1016/j.jspi.2019.02.005