Control Strategies for a Multi-Strain Epidemic Model

Document Type


Publication Date


Publication Title

Bulletin of Mathematical Biology






This article studies a multi-strain epidemic model with diffusion and environmental heterogeneity. We address the question of a control strategy for multiple strains of the infectious disease by investigating how the local distributions of the transmission and recovery rates affect the dynamics of the disease. Our study covers both full model (in which case the diffusion rates for all subgroups of the population are positive) and the ODE–PDE case (in which case we require a total lock-down of the susceptible subgroup and allow the infected subgroups to have positive diffusion rates). In each case, a basic reproduction number of the epidemic model is defined and it is shown that if this reproduction number is less than one then the disease will be eradicated in the long run. On the other hand, if the reproduction number is greater than one, then the disease will become permanent. Moreover, we show that when the disease is permanent, creating a common safety area against all strains and lowering the diffusion rate of the susceptible subgroup will result in reducing the number of infected populations. Numerical simulations are presented to support our theoretical findings.


Asymptotic behavior; Competition–exclusion; Infectious disease; Reaction–diffusion


Analysis | Statistical Models

UNLV article access

Search your library