Discontinuous Galerkin Methods for Maxwell's Equations in Drude Metamaterials on Unstructured Meshes

Document Type

Article

Publication Date

4-24-2018

Publication Title

Journal of Computational and Applied Mathematics

Volume

342

First page number:

147

Last page number:

163

Abstract

In this follow-up work, we extend the discontinuous Galerkin (DG) methods previously developed on rectangular meshes (Li et al., 2017) to triangular meshes. The DG schemes in Li et al. (2017) are both optimally convergent and energy conserving. However, as we shall see in the numerical results section, the DG schemes on triangular meshes only have suboptimal convergence rate. We prove the energy conservation and an error estimate for the semi-discrete schemes. The stability of the fully discrete scheme is proved and its error estimate is stated. We present extensive numerical results with convergence consistent of our error estimate, and simulations of wave propagation in Drude metamaterials to demonstrate the flexibility of triangular meshes.

Keywords

Discontinuous Galerkin methods; Maxwell's equations; Metamaterials; Backward wave progagation

Disciplines

Applied Mathematics

Language

English

UNLV article access

Search your library

Share

COinS