Relative risk for HIV in India – An estimate using conditional auto-regressive models with Bayesian approach

Document Type

Article

Publication Date

1-1-2017

Publication Title

Spatial and Spatio-temporal Epidemiology

Volume

20

First page number:

27

Last page number:

34

Abstract

Indian states are currently classified into HIV-risk categories based on the observed prevalence counts, percentage of infected attendees in antenatal clinics, and percentage of infected high-risk individuals. This method, however, does not account for the spatial dependence among the states nor does it provide any measure of statistical uncertainty. We provide an alternative model-based approach to address these issues. Our method uses Poisson log-normal models having various conditional autoregressive structures with neighborhood-based and distance-based weight matrices and incorporates all available covariate information. We use R and WinBugs software to fit these models to the 2011 HIV data. Based on the Deviance Information Criterion, the convolution model using distance-based weight matrix and covariate information on female sex workers, literacy rate and intravenous drug users is found to have the best fit. The relative risk of HIV for the various states is estimated using the best model and the states are then classified into the risk categories based on these estimated values. An HIV risk map of India is constructed based on these results. The choice of the final model suggests that an HIV control strategy which focuses on the female sex workers, intravenous drug users and literacy rate would be most effective. © 2017 Elsevier Ltd

Language

english

UNLV article access

Search your library

Share

COinS