Natural Frequency Analysis of a Sandwich Panel with Soft Core Based on a Refined Shear Deformation Model

Document Type



The natural frequency of a thick rectangular sandwich panel composed of orthotropic facesheets and a soft core was studied based on a refined shear deformation model. The shear deformation of the sandwich panel was described by a polynomial function. The effect of transverse shear modulus of the facesheets and core on flexural vibration of the panel was investigated. Comparison was made among classical thin plate theory, linear shear (low order) deformation theory and the refined shear (high order) deformation model. Results from finite element analysis were also provided to verify the theoretical predictions. It was shown that the refined shear deformation model provided a better prediction on the natural frequency of vibration of a sandwich panel than thin plate model or low order deformation model.


Deformations (Mechanics); Natural frequency; Refined shear deformation theory; Sandwich construction; Sandwich panel; Shear (Mechanics); Soft core; Vibration


Engineering | Materials Science and Engineering | Mechanical Engineering | Mechanics of Materials


Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library