Title

Combustion Engine Performance Diagnostics by Kinetic-Energy Measurement

Document Type

Article

Publication Date

7-1-1990

Publication Title

Journal of Engineering for Gas Turbines and Power-Transactions of the ASME

Volume

112

Issue

3

First page number:

301

Last page number:

307

Abstract

The diagnostic technique described in this paper is based on measuring the instantaneous angular speed of both the front end and the flywheel on internal-combustion engines, recording more than 400 speed measurements per engine cycle. Two noncontacting transducers are added to an existing drive train without requiring drive train modifications. A digital circuit, which includes a microprocessor, samples and processes the raw speed data. The numerical analysis includes data noise filtering, and the numerical determination of front end and flywheel speed waveforms. When operating without external load, the engine accelerates only the inertial load. When neglecting friction and the small amount of torsional energy in the crankshaft, it is shown that the engine energy can be modeled as a lumped parameter system consisting of inertia on both engine front and flywheel ends, coupled by a torsional spring. The results from measurements on an eight-cylinder diesel engine with various cylinder faults show that reduced cylinder performance produces a drop of kinetic energy for the faulty cylinder. An engine performance criterion evaluates the performance of each cylinder, based on its contribution to total engine kinetic energy. The results demonstrate that fault conditions are detected with high reliability.

Keywords

Automobiles – Power trains; Combustion; Cylinders; Diesel engines; Diesel motor – Cylinders; Engines; Flywheels; Internal combustion engines; Kinetic energy; Measurement; Springs (Mechanism); Strains and stresses

Disciplines

Engineering | Heat Transfer, Combustion | Mechanical Engineering

Language

English

Permissions

Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

Identifier

DOI: http://dx.doi.org/10.1115/1.2906495

UNLV article access

Search your library

Share

COinS