Generalized Design of an Anti-Swing Fuzzy Logic Controller for an Overhead Crane with Hoist

Document Type



The behavior of many mechanical systems, such as overhead cranes, can be predicted through intuitive observation of their motion under various forces. Mathematical modeling of an overhead crane shows that it is highly coupled. Nonetheless, it is surprisingly easy for an experienced crane operator to drive payloads to target positions with minimal cable swing. This observation naturally promotes the use of fuzzy logic to control overhead cranes. Traditionally, fuzzy logic controllers of overhead cranes were presented for specific crane system/motion parameters. This work presents a novel approach for automatically creating anti-swing fuzzy logic controllers for overhead cranes with hoisting. The model of the crane includes the distributed mass of the cable. The presented approach uses the inverse dynamics of the overhead crane and the desired motion parameters to determine the ranges of the variables of the controllers. The control action is distributed among three fuzzy logic controllers (FLCs): The travel controller, hoist controller, and anti-swing controller. Simulation examples show that the proposed controller can successfully drive overhead cranes under various operating conditions.


Anti-swing control; Automatic control; Cranes; derricks; etc.; Fuzzy logic; Fuzzy logic control; Hoisting; Inverse dynamics; Overhead cranes


Acoustics, Dynamics, and Controls | Applied Mathematics | Computer-Aided Engineering and Design | Controls and Control Theory | Mechanical Engineering


Use Find in Your Library, contact the author, or use interlibrary loan to garner a copy of the article. Publisher copyright policy allows author to archive post-print (author’s final manuscript). When post-print is available or publisher policy changes, the article will be deposited

UNLV article access

Search your library