Experimental Two-Axis Vibration Suppression and Control of a Flexible Robot Arm

Document Type



This article focuses on the implementation of a dual-mode controller for the maneuver of a two-axis flexible robotic arm. The joint angle trajectory tracking is accomplished by proportional and derivative and feedforward controllers. Based on the pole placement technique, a linear stabilizer is designed for elastic mode stabilization in the plane perpendicular to each joint axis. The stabilizer is switched on when the trajectory reaches the vicinity of the terminal state. The effect of switching time of the stabilizer and varying payload on arm vibration are investigated. With the proposed control system, accurate joint angle tracking and elastic mode stabilization can be accomplished.


Control theory; Manipulators (Mechanism); Trajectories (Mechanics)


Acoustics, Dynamics, and Controls | Applied Mechanics | Computer Engineering | Control Theory | Mechanical Engineering | Robotics


Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.

UNLV article access

Search your library