Quantifying Large Lattice Relaxations in Photovoltaic Devices

Document Type

Article

Publication Date

2-11-2020

Publication Title

Physical Review Applied

Volume

13

Issue

2

First page number:

1

Last page number:

10

Abstract

Temporal variations of Cu(In,Ga)Se2 photovoltaic device properties during light exposure at various temperatures and voltage biases for times up to 100 h are analyzed using the kinetic theory of large lattice relaxations. Open-circuit voltage and p-type doping increased with charge injection and decreased with temperature at low injection conditions. Lattice relaxation can account for both trends and activation energies extracted from the data are approximately 0.9 and 1.2 eV for devices with lower and higher sodium content, respectively. In these devices, increased sodium content resulted in higher initial p-type doping with greater stability. First-principles calculations providing revised activation energies for the (VSe−VCu) complex suggest that this defect does not account for the metastability observed here.

Keywords

Crystal defects; Dopantsl Lattice dynamics; Phonons; Photovoltaic absorbers

Disciplines

Atomic, Molecular and Optical Physics | Condensed Matter Physics

Language

English

UNLV article access

Share

COinS