Mouse model of muscle crush injury of the legs

Document Type



Because crush injury to skeletal muscle is an important cause of morbidity in natural disaster and battlefield settings, a reproducible and refined animal model of muscle crush injury is needed. Both open and closed small-animal models of skeletal muscle crush injury are available but are limited by their need for surgical isolation of the muscle or by the adverse effect of fibular fracture, respectively. In the current study, we developed and validated a novel, noninvasive mouse model of lower-extremity muscle crush injury. Despite the closed nature of our model, gross evidence of muscle damage was evident in all mice and was verified microscopically through hematoxylin and eosin staining. The injury elicited both neutrophil and macrophage infiltration at 24 and 48 h after injury. The area percentage and mean antigen area of F4/80-positive macrophages were higher at 48 h than at 24 h after injury, and CD68-positive macrophage area percentage and mean antigen area differed significantly between injured and uninjured muscle. In addition, the incidence of fibular fracture was one third lower than that reported for an alternative noninvasive model. In conclusion, our model is a reproducible method for muscle crush injury in the mouse pelvic limb and is a refinement of previous models because of its decreased bone fractures and reduction of animal numbers.


Animals | Musculoskeletal, Neural, and Ocular Physiology | Nursing | Pathology


Use Find in Your Library, contact the author, or interlibrary loan to garner a copy of the item. Publisher policy does not allow archiving the final published version. If a post-print (author's peer-reviewed manuscript) is allowed and available, or publisher policy changes, the item will be deposited.