Structure of Protoplanetary Discs with Magnetically Driven Winds
Document Type
Article
Publication Date
1-18-2018
Publication Title
Monthly Notices of the Royal Astronomical Society
Volume
475
Issue
4
First page number:
5059
Last page number:
5069
Abstract
We present a new set of analytical solutions to model the steady-state structure of a protoplanetary disc with a magnetically driven wind. Our model implements a parametrization of the stresses involved and the wind launching mechanism in terms of the plasma parameter at the disc midplane, as suggested by the results of recent, local magnetohydrodynamical simulations. When wind mass-loss is accounted for, we find that its rate significantly reduces the disc surface density, particularly in the inner disc region. We also find that models that include wind mass-loss lead to thinner dust layers. As an astrophysical application of our models, we address the case of HL Tau, whose disc exhibits a high accretion rate and efficient dust settling at its midplane. These two observational features are not easy to reconcile with conventional accretion disc theory, where the level of turbulence needed to explain the high accretion rate would prevent a thin dust layer. Our disc model that incorporates both mass-loss and angular momentum removal by a wind is able to account for HL Tau observational constraints concerning its high accretion rate and dust layer thinness.
Keywords
Accretion; Accretion discs; Planetary systems; Protoplanetary discs
Disciplines
Astrophysics and Astronomy
Language
English
Repository Citation
Khajenabi, F.,
Shadmehri, M.,
Pessah, M. E.,
Martin, R. G.
(2018).
Structure of Protoplanetary Discs with Magnetically Driven Winds.
Monthly Notices of the Royal Astronomical Society, 475(4),
5059-5069.
http://dx.doi.org/10.1093/mnras/sty153