High-Pressure Evolution of Crystal Bonding Structures and Properties of FeOOH
Document Type
Article
Publication Date
4-12-2018
Publication Title
Journal of Physical Chemistry Letters
Volume
9
First page number:
2181
Last page number:
2185
Abstract
Recent conflicting reports on the high-pressure structural evolution of iron oxide-hydroxide (FeOOH) offer starkly contrasting scenarios for the hydrogen and oxygen cycles in Earth’s interior. Here we explore the crystal structures of FeOOH using an advanced search algorithm combined with first-principles calculations. Our results indicate a phase transition around 70 GPa from the known ε-FeOOH to a new pyrite-type FeOOH (P-FeOOH) phase, and the two phases remain nearly degenerate in an unusually large pressure range. These findings clarify and explain the experimentally observed structural evolution and extensive phase coexistence. Moreover, our structure search identifies a previously unknown monoclinic (M-FeOOH) phase that is energetically close to P-FeOOH at pressures near the core-mantle boundary. We further reveal that the high-pressure FeOOH phases exhibit remarkably distinct sound-velocity profiles, providing key material properties essential to interpreting seismic data and elucidating FeOOH’s influence on geophysical and geochemical processes in deep Earth.
Keywords
Calculations; High pressure effects; High pressure engineering; Iron oxides; Pyrites; Seismology
Disciplines
Chemistry | Earth Sciences
Language
English
Repository Citation
Lu, C.,
Chen, C.
(2018).
High-Pressure Evolution of Crystal Bonding Structures and Properties of FeOOH.
Journal of Physical Chemistry Letters, 9
2181-2185.
http://dx.doi.org/10.1021/acs.jpclett.8b00947