Tunable Quantum Order in Bilayer Bi2Te3: Stacking Dependent Quantum Spin Hall States
Document Type
Article
Publication Date
6-11-2018
Publication Title
Applied Physics Letters
Volume
112
Issue
24
First page number:
1
Last page number:
4
Abstract
Recent years have seen the rising importance of interface stacking in determining the electronic properties of multilayer materials stemming from the interlayer coupling; however, the stacking effects on exotic topological quantum orders largely remain to be explored. Here, we show by first-principles studies that bilayer Bi2Te3 host stacking is dependent on quantum spin Hall effects, with a topological phase transition induced by a change in the interlayer stacking pattern. The spin-filtered helical edge states are concomitantly switched on/off along with the changing interlayer stacking pattern. Since few-layer Bi2Te3 has already been experimentally synthesized, the present finding opens an avenue for exploring the fundamental mechanisms and the practical implications of the quantum phenomena associated with band topology in this versatile and intriguing 2D material.
Disciplines
Quantum Physics
Language
English
Repository Citation
Kou, L.,
Niu, C.,
Fu, H.,
Ma, Y.,
Yan, B.,
Chen, C.
(2018).
Tunable Quantum Order in Bilayer Bi2Te3: Stacking Dependent Quantum Spin Hall States.
Applied Physics Letters, 112(24),
1-4.
http://dx.doi.org/10.1063/1.5038079