Model Representations of Kerogen Structures: An Insight from Density Functional Theory Calculations and Spectroscopic Measurements
Document Type
Article
Publication Date
1-1-2017
Publication Title
Scientific Reports
Volume
7
Issue
1
Abstract
Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution. © 2017 The Author(s).
Language
english
Repository Citation
Weck, P. F.,
Kim, E.,
Wang, Y.,
Kruichak, J. N.,
Mills, M. M.,
Matteo, E. N.,
Pellenq, R. J.
(2017).
Model Representations of Kerogen Structures: An Insight from Density Functional Theory Calculations and Spectroscopic Measurements.
Scientific Reports, 7(1),
http://dx.doi.org/10.1038/s41598-017-07310-9