Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides
Document Type
Article
Publication Date
1-1-2017
Publication Title
Physical Review Letters
Volume
119
Issue
11
Abstract
Transition-metal light-element compounds are a class of designer materials tailored to be a new generation of superhard solids, but indentation strain softening has hitherto limited their intrinsic load-invariant hardness to well below the 40 GPa threshold commonly set for superhard materials. Here we report findings from first-principles calculations that two tungsten nitrides, hP4-WN and hP6-WN2, exhibit extraordinary strain stiffening that produces remarkably enhanced indentation strengths exceeding 40 GPa, raising exciting prospects of realizing the long-sought nontraditional superhard solids. Calculations show that hP4-WN is metallic both at equilibrium and under indentation, marking it as the first known intrinsic superhard metal. An x-ray diffraction pattern analysis indicates the presence of hP4-WN in a recently synthesized specimen. We elucidate the intricate bonding and stress response mechanisms for the identified structural strengthening, and the insights may help advance rational design and discovery of additional novel superhard materials. © 2017 American Physical Society.
Language
english
Repository Citation
Lu, C.,
Li, Q.,
Ma, Y.,
Chen, C.
(2017).
Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides.
Physical Review Letters, 119(11),
http://dx.doi.org/10.1103/PhysRevLett.119.115503