Document Type
Article
Publication Date
9-4-2018
Publication Title
Monthly Notices of the Royal Astronomical Society
Volume
481
Issue
2
First page number:
2628
Last page number:
2645
Abstract
Magnetic, radiation pressure, and thermal driving are the three mechanisms capable of launching accretion disc winds. In X-ray binaries, radiation pressure is often not significant, as in many systems the luminosity is too low for driving due to continuum transitions yet too high for driving due to line transitions. This leaves thermal and magnetic driving as the contender launching mechanisms in these systems. Using ATHENA++, we perform axisymmetric ideal MHD simulations that include radiative heating and cooling processes appropriate for Compton heated winds to show that the inclusion of magnetic fields into a thermally driven wind has the opposite effect of what one might expect: rather than provide a velocity boost, the thermal wind is suppressed in low-plasma beta regions where the field lines are strong enough to reshape the direction of the flow. Our analysis reveals that magneto-centrifugal launching is present but weak, while the reduction in wind velocity is not due to the change in gravitational potential through the magnetically imposed streamline geometry, but rather due to the increased flow tube area just above the surface of the disc, which is less conducive to acceleration. Our results suggest that for magnetothermal wind models to be successful at producing fast dense outflows in low-mass X-ray binaries, the winds must be magnetically launched well within the Compton radius.
Keywords
MHD; Stars: Winds, outflow; X-rays: Binaries
Disciplines
Astrophysics and Astronomy
File Format
File Size
11.789 Kb
Language
English
Permissions
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society©: 2018 [owner as specified on the article] Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Repository Citation
Waters, T.,
Proga, D.
(2018).
Magnetothermal Disc Winds in X-ray Binaries: Poloidal Magnetic Fields Suppress Thermal Winds.
Monthly Notices of the Royal Astronomical Society, 481(2),
2628-2645.
http://dx.doi.org/10.1093/mnras/sty2398