Document Type
Article
Publication Date
3-8-2019
Publication Title
Astrophysical Journal Letters
Publisher
American Astronomical Society
Volume
873
Issue
2
First page number:
1
Last page number:
5
Abstract
If at least one of the members of a compact binary coalescence is charged, the inspiral of the two members would generate a Poynting flux with an increasing power, giving rise to a brief electromagnetic counterpart temporally associated with the chirp signal of the merger (with possibly a small temporal offset), which we term as the charged compact binary coalescence (cCBC) signal. We develop a general theory of cCBC for any mass and amount of charge for each member. Neutron stars (NSs), as spinning magnets, are guaranteed to be charged, so the cCBC signal should accompany all NS mergers. The cCBC signal is clean in a black hole (BH)–NS merger with a small mass ratio ($q\equiv {m}_{2}/{m}_{1}\lt 0.2$), in which the NS plunges into the BH as a whole, and its luminosity/energy can reach that of a fast radio burst if the NS is Crab-like. The strength of the cCBC signal in Extreme Mass Ratio Inspiral Systems is also estimated.
Keywords
Gravitational waves; Radiation mechanisms: general; Stars: black holes; Stars: neutron
Disciplines
Other Astrophysics and Astronomy | Stars, Interstellar Medium and the Galaxy
File Format
File Size
261 KB
Language
English
Repository Citation
Zhang, B.
(2019).
Charged Compact Binary Coalescence Signal and Electromagnetic Counterpart of Plunging Black Hole–Neutron Star Mergers.
Astrophysical Journal Letters, 873(2),
1-5.
American Astronomical Society.
http://dx.doi.org/10.3847/2041-8213/ab0ae8
Included in
Other Astrophysics and Astronomy Commons, Stars, Interstellar Medium and the Galaxy Commons