Document Type

Article

Publication Date

4-17-2019

Publication Title

The Astrophysical Journal Letters

Publisher

American Astronomical Society

Volume

875

Issue

2

First page number:

1

Last page number:

11

Abstract

Magnetars are a class of highly magnetized, slowly rotating neutron stars, only a small fraction of which exhibit radio emission. We propose that the coherent radio curvature emission is generated by net charge fluctuations from a twist-current-carrying bundle (the j-bundle) in the scenario of magnetar-quake. Two-photon pair production is triggered, which requires a threshold voltage not too much higher than 109 V in the current-carrying bundle, and which can be regarded as the "open field lines" of a magnetar. Continued untwisting of the magnetosphere maintains change fluctuations, and hence coherent radio emission, in the progressively shrinking j-bundle, which lasts for years until the radio beam is too small to be detected. The modeled peak flux of radio emission and the flat spectrum are generally consistent with the observations. We show that this time-dependent, conal-beam, radiative model can interpret the variable radio pulsation behaviors and the evolution of the X-ray hot spot of the radio-transient magnetar XTE J1810−197 and the high-B pulsar/anomalous X-ray pulsar PSR J1622−4950. Radio emission with luminosity of and high-frequency oscillations are expected to be detected for a magnetar after an X-ray outburst. Differences of radio emission between magnetars and ordinary pulsars are discussed.

Keywords

Pulsars: general; Radiation mechanisms: non-thermal; Radio continuum: general; Stars: neutron

Disciplines

Astrophysics and Astronomy

File Format

pdf

File Size

869 KB

Language

English

UNLV article access

Search your library

Share

COinS