Document Type

Article

Publication Date

4-25-2019

Publication Title

The Astrophysical Journal Letters

Publisher

American Astronomical Society

Volume

876

Issue

1

First page number:

1

Last page number:

5

Abstract

Mass and size distributions are the key characteristics of any astrophysical object, including the densest clumps comprising the cold phase of multiphase environments. In our recent papers, we showed how individual clouds of various sizes form and evolve in active galactic nuclei. In particular, we showed that large clouds undergo damped oscillations as a response to their formation process. Here we follow up this investigation, addressing how different size clouds interact. We find that smaller clouds become trapped in the advective flows generated by larger clouds. The explanation for this behavior leads to a rather remarkable conclusion: even in the absence of gravity, complexes of clouds are dynamically unstable. In an idealized environment (e.g., one free of turbulence and magnetic fields) a perfectly symmetric arrangement of static clouds will remain static, but any small spatial perturbation will lead to all clouds coalescing into a single, large cloud, given enough time. Using numerical simulations, we investigate the main factors that determine the rate of coalescence. In addition to the cloud separation distance, we find that the transient response of clouds to a disturbance is the primary factor. Turbulent motions in the flow can easily suppress this tendency for spatially well-separated clouds to coalesce, so it is as yet unclear if this phenomenon can occur in nature. Nevertheless, this Letter casts strong doubts on a recent hypothesis that large clouds are prone to fragmentation.

Keywords

Galaxies: Halo; Galaxies: nuclei; Hydrodynamics; Instabilities

Disciplines

Stars, Interstellar Medium and the Galaxy

File Format

pdf

File Size

2.201 KB

Language

English

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS