Document Type
Article
Publication Date
3-23-2020
Publication Title
The Astrophysical Journal Letters
Volume
892
Issue
1
First page number:
1
Last page number:
8
Abstract
Fast radio bursts (FRBs) are mysterious radio transients whose physical origin is still unknown. Within a few astronomical units near an FRB source, the electric field of the electromagnetic wave is so large that the electron oscillation velocity becomes relativistic, which makes the classical Thomson scattering theory and the linear plasma theory invalid. We discuss FRBs as strong waves interacting with the ambient medium, in terms of both electron motion properties and plasma properties. Several novel features are identified. (1) The cross section of Thomson scattering is significantly enhanced for the scattering photons. (2) On the other hand, because of the nonlinear plasma properties in strong waves, the near-source plasma is more transparent and has a smaller effective dispersion measure (DM) contribution to the observed value. For a repeating FRB source, the brighter bursts would have somewhat smaller DMs contributed by the near-source plasma. (3) The radiation beam undergoes relativistic self-focusing in a dense plasma, the degree of self-focusing (or squeezing) depends on the plasma density. Such a squeezing effect would affect the collimation angle and the true event rate of FRBs. (4) When an FRB propagates in a nearby ambient plasma, a wakefield wave in the plasma will be generated by the ponderomotive force of the FRB, and accelerates electrons in the ambient medium. However, such an effect is too weak to be observationally interesting.
Keywords
Radio transient sources; Compact binary stars
Disciplines
Stars, Interstellar Medium and the Galaxy
File Format
File Size
482 KB
Language
English
Repository Citation
Yang, Y.,
Zhang, B.
(2020).
Fast Radio Bursts as Strong Waves Interacting with the Ambient Medium.
The Astrophysical Journal Letters, 892(1),
1-8.
http://dx.doi.org/10.3847/2041-8213/ab7a1b