Outflows from Inflows: The Nature of Bondi-Like Accretion
Document Type
Article
Publication Date
11-4-2019
Publication Title
Monthly Notices of the Royal Astronomical Society: Letters
Volume
491
Issue
1
First page number:
L76
Last page number:
L80
Abstract
The classic Bondi solution remains a common starting point both for studying black hole growth across cosmic time in cosmological simulations and for smaller scale simulations of active galactic nuclei (AGN) feedback. In nature, however, there will be inhomogeneous distributions of rotational velocity and density along the outer radius (Ro) marking the sphere of influence of a black hole. While there have been many studies of how the Bondi solution changes with a prescribed angular momentum boundary condition, they have all assumed a constant density at Ro. In this Letter, we show that a non-uniform density at Ro causes a meridional flow and due to conservation of angular momentum, the Bondi solution qualitatively changes into an inflow–outflow solution. Using physical arguments, we analytically identify the critical logarithmic density gradient |∂lnρ/∂θ∂lnρ/∂θ| above which this change of the solution occurs. For realistic Ro, this critical gradient is less than 0.01 and tends to 0 as Ro → ∞. We show using numerical simulations that, unlike for solutions with an imposed rotational velocity, the accretion rate for solutions under an inhomogeneous density boundary condition remains constant at nearly the Bondi rate M˙BM˙B, while the outflow rate can greatly exceed M˙BM˙B.
Keywords
Accretion; Accretion disks; Black hole physics; Hydrodynamics
Disciplines
Physical Processes | Stars, Interstellar Medium and the Galaxy
Language
English
Repository Citation
Waters, T.,
Aykutalp, A.,
Proga, D.,
Johnson, J.,
Li, H.,
Smidt, J.
(2019).
Outflows from Inflows: The Nature of Bondi-Like Accretion.
Monthly Notices of the Royal Astronomical Society: Letters, 491(1),
L76-L80.
http://dx.doi.org/10.1093/mnrasl/slz168