Polar Planets Around Highly Eccentric Binaries are the Most Stable
Document Type
Article
Publication Date
4-20-2020
Publication Title
Monthly Notices of the Royal Astronomical Society
Volume
494
Issue
4
First page number:
4645
Last page number:
4655
Abstract
We study the orbital stability of a non-zero mass, close-in circular orbit planet around an eccentric orbit binary for various initial values of the binary eccentricity, binary mass fraction, planet mass, planet semimajor axis, and planet inclination by means of numerical simulations that cover 5 × 104 binary orbits. For small binary eccentricity, the stable orbits that extend closest to the binary (most stable orbits) are nearly retrograde and circulating. For high binary eccentricity, the most stable orbits are highly inclined and librate near the so-called generalized polar orbit which is a stationary orbit that is fixed in the frame of the binary orbit. For more extreme mass ratio binaries, there is a greater variation in the size of the stability region (defined by initial orbital radius and inclination) with planet mass and initial inclination, especially for low binary eccentricity. For low binary eccentricity, inclined planet orbits may be unstable even at large orbital radii (separation >5ab>5ab). The escape time for an unstable planet is generally shorter around an equal mass binary compared with an unequal mass binary. Our results have implications for circumbinary planet formation and evolution and will be helpful for understanding future circumbinary planet observations.
Keywords
Methods: analytical; Methods: numerical; Celestrial mechanics; Binaries: general; Planetary systems
Disciplines
Cosmology, Relativity, and Gravity | Physical Processes | Stars, Interstellar Medium and the Galaxy
Language
English
Repository Citation
Chen, C.,
Lubow, S. H.,
Martin, R. G.
(2020).
Polar Planets Around Highly Eccentric Binaries are the Most Stable.
Monthly Notices of the Royal Astronomical Society, 494(4),
4645-4655.
http://dx.doi.org/10.1093/mnras/staa1037