Catching jetted tidal disruption events early in millimetre
Document Type
Article
Publication Date
1-1-2016
Publication Title
Monthly Notices of the Royal Astronomical Society
Volume
461
Issue
3
Abstract
Relativistic jets can form from at least some tidal disruption events (TDEs) of (sub-)stellar objects around supermassive black holes. We detect the millimetre (MM) emission of IGR J12580+0134 - the nearest TDE known in the galaxy NGC 4845 at the distance of only 17 Mpc, based on Planck all-sky survey data. The data show significant flux jumps after the event, followed by substantial declines, in all six high-frequency Planck bands from 100 to 857 GHz. We further show that the evolution of the MM flux densities is well consistent with our model prediction from an off-axis jet, as was initially suggested from radio and X-ray observations. This detection represents the second TDE with MM detections; the other is Sw J1644+57, an on-axis jetted TDE at redshift of 0.35. Using the on- and off-axis jet models developed for these two TDEs as templates, we estimate the detection potential of similar events with the Large Millimeter Telescope (LMT) and the Atacama Large Millimeter/ submillimeter Array (ALMA). Assuming an exposure of 1 h, we find that the LMT (ALMA) can detect jetted TDEs up to redshifts z ∼ 1 (2), for a typical disrupted star mass of ∼1 M⊙. The detection rates of on- and off-axis TDEs can be as high as ∼0.6 (13) and 10 (220) yr-1, respectively, for the LMT (ALMA). We briefly discuss how such observations, together with follow-up radio monitoring, may lead to major advances in understanding the jetted TDEs themselves and the ambient environment of the circumnuclear medium. © 2016 The Authors.
Keywords
Galaxies: jets; Galaxies: nuclei; Radiation mechanisms: non-thermal; Submillimetre: galaxies
Language
English
Repository Citation
Yuan, Q.,
Wang, Q. D.,
Lei, W. H.,
Gao, H.,
Zhang, B.
(2016).
Catching jetted tidal disruption events early in millimetre.
Monthly Notices of the Royal Astronomical Society, 461(3),
http://dx.doi.org/10.1093/mnras/stw1543