Document Type

Article

Publication Date

12-28-2020

Publication Title

Machine Learning: Science and Technology

Volume

2

Issue

2

First page number:

1

Last page number:

18

Abstract

We present PyXtal_FF—a package based on Python programming language—for developing machine learning potentials (MLPs). The aim of PyXtal_FF is to promote the application of atomistic simulations through providing several choices of atom-centered descriptors and machine learning regressions in one platform. Based on the given choice of descriptors (including the atom-centered symmetry functions, embedded atom density, SO4 bispectrum, and smooth SO3 power spectrum), PyXtal_FF can train MLPs with either generalized linear regression or neural network models, by simultaneously minimizing the errors of energy/forces/stress tensors in comparison with the data from ab-initio simulations. The trained MLP model from PyXtal_FF is interfaced with the Atomic Simulation Environment (ASE) package, which allows different types of light-weight simulations such as geometry optimization, molecular dynamics simulation, and physical properties prediction. Finally, we will illustrate the performance of PyXtal_FF by applying it to investigate several material systems, including the bulk SiO2, high entropy alloy NbMoTaW, and elemental Pt for general purposes. Full documentation of PyXtal_FF is available at https://pyxtal-ff.readthedocs.io.

Keywords

Machine learning potential; Neural networks regression; Atom-centered descriptors; Atomistic simulation

Disciplines

Artificial Intelligence and Robotics

File Format

pdf

File Size

1091 KB

Language

English

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS