Editors
Smith, A.
Document Type
Article
Publication Date
2-21-2021
Publication Title
The Journal of Open Source Software
First page number:
1
Last page number:
7
Abstract
The Pencil Code is a highly modular physics-oriented simulation code that can be adapted to a wide range of applications. It is primarily designed to solve partial differential equations (PDEs) of compressible hydrodynamics and has lots of add-ons ranging from astrophysical magnetohydrodynamics (MHD) (A. Brandenburg & Dobler, 2010) to meteorological cloud microphysics (Li et al., 2017) and engineering applications in combustion (Babkovskaia et al., 2011). Nevertheless, the framework is general and can also be applied to situations not related to hydrodynamics or even PDEs, for example when just the message passing interface or input/output strategies of the code are to be used. The code can also evolve Lagrangian (inertial and noninertial) particles, their coagulation and condensation, as well as their interaction with the fluid. A related module has also been adapted to perform ray tracing and to solve the eikonal equation. The code is being used for Cartesian, cylindrical, and spherical geometries, but further extensions are possible. One can choose between different time stepping schemes and different spatial derivative operators. High-order first and second derivatives are used to deal with weakly compressible turbulent flows. There are also different diffusion operators to allow for both direct numerical simulations (DNS) and various types of large-eddy simulations (LES).
Disciplines
Astrophysics and Astronomy | Partial Differential Equations
File Format
File Size
157 KB
Language
English
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Repository Citation
The Pencil Code Collaboration,
Yang, C.
(2021).
The Pencil Code, a Modular MPI Code for Partial Differential Equations and Particles: Multipurpose and Multiuser-maintained. In Smith, A.,
The Journal of Open Source Software
1-7.
https://digitalscholarship.unlv.edu/physastr_fac_articles/661
Comments
For the full list of authors, see the full text document.