Document Type

Article

Publication Date

10-23-2023

Publication Title

AIP Advances

Publisher

AIP Publishing

Volume

13

Issue

10

Abstract

The high proclivity of x rays to destabilize and distort molecular structures has been previously utilized in the synthesis of novel compounds. Here, we show that x-ray induced decomposition of cadmium oxalate induces chemical and structural transformations only at 0.5 and 1 GPa. Using x-ray diffraction and Raman spectroscopy, the synthesized product is identified as cadmium carbonate with cadmium oxalate remnants, which is stable under ambient conditions. At ambient and >1 GPa pressures, only degradation of the electronic density distribution is observed. The transformation kinetics are examined in terms of Avrami’s model, which demonstrates that despite the necessity of high pressure for efficient x-ray induced synthesis of cadmium carbonate, the rate and geometry of structural synthesis in the 0.5–1 GPa pressure range do not depend on the applied pressure. In addition, the possible role of intermolecular distance and molecular mobility in transformation yield is also discussed. Our experimental results indicate that x-ray induced photochemical synthetic pathways can be modulated and optimized by specific parameter selection such as high pressure.

Keywords

Phase Transitions; Photoabsorption; Transition Metals; Crystallization; Raman Spectroscopy; Reaction Rate Constants; X-ray Diffraction; Chemical Reactions

Disciplines

Chemistry | Physics | Radiochemistry

File Format

pdf

File Size

5500 KB

Language

English

Rights

IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

UNLV article access

Search your library

Share

COinS