Superconductivity in Compression-Shear Deformed Diamond

Chang Liu, Jilin University
Xianqi Song, Jilin University
Quan Li, Jilian University
Yanming Ma, Jilin University
Changfeng Chen, University of Nevada, Las Vegas


Diamond is a prototypical ultrawide band gap semiconductor, but turns into a superconductor with a critical temperature Tc≈4 K near 3% boron doping [E. A. Ekimov et al., Nature (London) 428, 542 (2004)]. Here we unveil a surprising new route to superconductivity in undoped diamond by compression-shear deformation that induces increasing metallization and lattice softening with rising strain, producing phonon mediated Tc up to 2.4–12.4 K for a wide range of Coulomb pseudopotential μ∗=0.15–0.05. This finding raises intriguing prospects of generating robust superconductivity in strained diamond crystal, showcasing a distinct and hitherto little explored approach to driving materials into superconducting states via strain engineering. These results hold promise for discovering superconductivity in normally nonsuperconductive materials, thereby expanding the landscape of viable nontraditional superconductors and offering actionable insights for experimental exploration.