Award Date

1-1-2000

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Chemistry

First Committee Member

Linda S. Sapochak

Number of Pages

112

Abstract

A technology that shows great promise for application in novel flat panel displays is based on electroluminescence (EL) of organic light-emitting devices (OLEDs). Aluminum tris(8-hydroxy quinoline) (Alq3)-type materials are very important as emitter materials in OLEDs. Systematic experimental and theoretical studies of these materials are crucial in order to elucidate the relationship between structure and function of EL materials and ultimately optimize device performance. It has been demonstrated both theoretically and experimentally that the photoluminescence (PL) emission energies of Alq 3 can be tuned by adding substituents to the quinolate ligand. The electronic and structural changes associated with such substitutions can dramatically affect the resulting PL and EL efficiencies. The first systematic study of the PL and EL properties of a series of methyl-substituted quinolate tris-chelates of aluminum, gallium, and indium is reported. Detailed description of synthetic routes, characterization results, photophysical data, device data, and x-ray absorption data are presented. The effect of methyl and metal ion substitution on EL is discussed with respect to changes in required parameters.

Keywords

Application; Chelate; Effects; Electroluminescence; Materials; Metal; Organic; Quinolate; Substitution

Controlled Subject

Materials science; Chemistry, Physical and theoretical

File Format

pdf

File Size

2519.04 KB

Degree Grantor

University of Nevada, Las Vegas

Language

English

Permissions

If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.

Identifier

https://doi.org/10.25669/ic7r-0gap


Share

COinS