Award Date

1-1-2003

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Mathematical Sciences

First Committee Member

David G. Costa

Number of Pages

126

Abstract

In the last two decades plenty of research has been carried out in the field of Wavelet theory and it is well known that wavelets can efficiently deal with point-like singularities. Unfortunately, such is not the case for higher dimensions singularities. To overcome this weakness of the Wavelet transform E. Candes and D. Donoho [4] introduced a new wavelet-like transform that can effectively deal with linear singularities in two dimensions, namely the Ridgelet transform. This new representation tool exploits the ability of wavelets to deal with point singularities. In fact, the Ridgelet transform is equivalent to a one-dimensional wavelet transform in the Radon domain. By doing so, a line singularity is transformed into a point singularity (by means of the Radon transform) which can then be efficiently analyzed by the wavelet transform; This thesis presents the Ridgelet transform, its properties and connections to the Radon and Wavelet transform. Also, the reader is presented with practical results that allow us to see how the Ridgelet transform is much better suited than the Wavelet transform for representing images with straight edges (linear singularities).

Keywords

Linear; Objects; Promising; Represent; Ridgelets; Singularities; Transforms; Wavelet

Controlled Subject

Mathematics

File Format

pdf

File Size

2437.12 KB

Degree Grantor

University of Nevada, Las Vegas

Language

English

Permissions

If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.

Identifier

https://doi.org/10.25669/kj0a-yj6p


Share

COinS