Award Date

1-1-2006

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical and Computer Engineering

First Committee Member

Emma Regentova

Number of Pages

90

Abstract

In Global Systems for Mobile Communications (GSM), always-update location strategy is used to keep track of mobile terminals within the network. However future Personal Communication Networks (PCS) will require to serve a wide range of services (digital voice, video, data, and email) and also will have to support a large population of users. Under such demands, determining the exact location of a user by traditional strategies would be difficult and would result in increasing the signaling load imposed by location-update and paging procedures. The problem is not only in increasing cost, but also in non-efficient utilization of a precious resource, i.e., radio bandwidth; In this thesis, personalized Location Areas (PLAs) are formed considering the mobility patterns of individual users in the system such that the signaling due to location update and paging is minimized. We prove that the problem in this formulation is of NP complexity. Therefore we study efficient optimization techniques able to avoid combinatorial search. Three known classes of optimization techniques are studied. They are Simulated Annealing, Tabu Search and Genetic Search. Three algorithms are designed for solving the problem. Modeling does not assume any specific cell structure or network topology that makes the proposal widely applicable. The behavior of mobile terminals in the network is modeled as Random Walk with an absorbing state and the Markov chain is used for cost analysis; Numeric simulation carried out for 25 and 100 hexagonal cell networks have shown that Simulated Annealing based algorithm outperforms other two by indicators of the runtime complexity and signaling cost of location management. The ID's of cells populating the calculated area are provided to the mobile terminal and saved in its local memory every time the mobile subscriber moves out its current location area. Otherwise, no location update is performed, but only paging. Thus, at the expense of small local memory, the location management is carried more efficiently.

Keywords

Areas; Design; Future; Location; Networks Personalized

Controlled Subject

Electrical engineering

File Format

pdf

File Size

2027.52 KB

Degree Grantor

University of Nevada, Las Vegas

Language

English

Permissions

If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.

Identifier

https://doi.org/10.25669/cl8f-qpu4


Share

COinS