Award Date

1-1-2007

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Electrical and Computer Engineering

First Committee Member

Venkatesan Muthukumar

Number of Pages

124

Abstract

Video based vehicle detection and surveillance technologies are an integral part of Intelligent Transportation System (ITS), due to its non-intrusiveness and capability or capturing global and specific vehicle behavior data. The initial goal of this thesis is to develop an efficient advance warning ITS system for detection of congestion at work zones and special events based on video detection. The goals accomplished by this thesis are: (1) successfully developed the advance warning ITS system using off-the-shelf components and, (2) Develop and evaluate an improved vehicle detection and tracking algorithm. The advance warning ITS system developed includes many off-the-shelf equipments like "Autoscope" (video based vehicle detector), Digital Video Recorders, RF transceivers, high gain Yagi antennas, variable message signs and interface processors. The video based detection system used requires calibration and fine tuning of configuration parameters for accurate results. Therefore, an in-house video based vehicle detection system was developed using the Corner Harris algorithm to eliminate the need of complex calibration and contrasts modifications. The algorithm was implemented using OpenCV library on a Arcom's Olympus Windows XP Embedded development kit running WinXPE operating system. The algorithm performance is for accuracy in vehicle speed and count is evaluated. The performance of the proposed algorithm is equivalent or better to the Autoscope system without any modifications to calibration and lamination adjustments.

Keywords

Advanced; Based; Detection; Intelligent; System; Transportation; Vehicle; Video; Warning

Controlled Subject

Electrical engineering; Transportation

File Format

pdf

File Size

4372.48 KB

Degree Grantor

University of Nevada, Las Vegas

Language

English

Permissions

If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.

Identifier

https://doi.org/10.25669/7lsy-t2kr


Share

COinS