Award Date

1-1-1993

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Computer Science

First Committee Member

Ajoy Kumar Datta

Number of Pages

35

Abstract

A self-stabilizing system is a network of processors, which, when started from an arbitrary (and possibly illegal) initial state, always returns to a legal state in a finite number of steps. Self-stabilization is an evolving paradigm in fault-tolerant computing. This research will be the first time self-stabilization is used in the areas of deadlock detection and prevention. Traditional deadlock detection algorithms have a process initiate a probe. If that probe travels around the system and is received by the initiator, there is a cycle in the system, and deadlock is detected. In order to prevent deadlocks, algorithms usually rank nodes in order to determine if an added edge will create a deadlock in the system. In a self-stabilizing system, perturbances are automatically dealt with. For the deadlock model, the perturbances in the system are requests and releases of resources. So, the self-stabilizing deadlock detection algorithm will automatically detect a deadlock when a request causes a cycle in the wait-for graph. The self-stabilizing prevention algorithm prevents deadlocks in a similar manner. The self-stabilizing algorithms do not have to be initiated by any process because the requests and releases create a perturbance which is dealt with automatically.

Keywords

Algorithms; Deadlock; Distributed; Self; Stabilizing; System

Controlled Subject

Computer science

File Format

pdf

File Size

1464.32 KB

Degree Grantor

University of Nevada, Las Vegas

Language

English

Permissions

If you are the rightful copyright holder of this dissertation or thesis and wish to have the full text removed from Digital Scholarship@UNLV, please submit a request to digitalscholarship@unlv.edu and include clear identification of the work, preferably with URL.

Identifier

https://doi.org/10.25669/mt0e-efpw


Share

COinS