Title

Holocene shifts in the assembly of plant and animal communities implicate human impacts

Document Type

Article

Publication Date

12-16-2015

Publication Title

Nature

Volume

529

Issue

7584

First page number:

80

Last page number:

83

Abstract

Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change1. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance2, 3. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size4, 5 and the spread of agriculture in North America6, 7. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.

Keywords

Community ecology; Paleoecology

UNLV article access

Search your library

Share

COinS