AlzGPS: A Genome-Wide Positioning Systems Platform to Catalyze Multi-Omics for Alzheimer’s Drug Discovery

Document Type


Publication Date


Publication Title

Alzheimer's Research and Therapy



First page number:


Last page number:



Background: Recent DNA/RNA sequencing and other multi-omics technologies have advanced the understanding of the biology and pathophysiology of AD, yet there is still a lack of disease-modifying treatments for AD. A new approach to integration of the genome, transcriptome, proteome, and human interactome in the drug discovery and development process is essential for this endeavor. Methods: In this study, we developed AlzGPS (Genome-wide Positioning Systems platform for Alzheimer’s Drug Discovery,, a comprehensive systems biology tool to enable searching, visualizing, and analyzing multi-omics, various types of heterogeneous biological networks, and clinical databases for target identification and development of effective prevention and treatment for AD. Results: Via AlzGPS: (1) we curated more than 100 AD multi-omics data sets capturing DNA, RNA, protein, and small molecule profiles underlying AD pathogenesis (e.g., early vs. late stage and tau or amyloid endophenotype); (2) we constructed endophenotype disease modules by incorporating multi-omics findings and human protein-protein interactome networks; (3) we provided possible treatment information from ~ 3000 FDA approved/investigational drugs for AD using state-of-the-art network proximity analyses; (4) we curated nearly 300 literature references for high-confidence drug candidates; (5) we included information from over 1000 AD clinical trials noting drug’s mechanisms-of-action and primary drug targets, and linking them to our integrated multi-omics view for targets and network analysis results for the drugs; (6) we implemented a highly interactive web interface for database browsing and network visualization. Conclusions: Network visualization enabled by AlzGPS includes brain-specific neighborhood networks for genes-of-interest, endophenotype disease module networks for omics-of-interest, and mechanism-of-action networks for drugs targeting disease modules. By virtue of combining systems pharmacology and network-based integrative analysis of multi-omics data, AlzGPS offers actionable systems biology tools for accelerating therapeutic development in AD.


Alzheimer’s disease; Clinical trial; Drug repurposing; Genomics; Mechanism-of-action; Multi-omics; Network medicine; Systems pharmacology


Cognitive Neuroscience | Molecular and Cellular Neuroscience



UNLV article access

Search your library