Award Date
8-1-2012
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Physics and Astronomy
First Committee Member
Victor H. Kwong
Second Committee Member
David Shelton
Third Committee Member
Stephen Lepp
Fourth Committee Member
Balakrishnan Naduvalath
Number of Pages
56
Abstract
The stability diagram provides a useful tool for determining the appropriate AC biased potential to confine ions in an ion trap. Since no analytic solution exists for the cylindrical ion trap's (CIT's) equations of motion, the CIT's stability region is not well known. The objective of this thesis is to determine the stability region for a CIT numerically and experimentally. The equations of motion for ions confined in a CIT are derived and found to be similar to the Mathieu equation, i.e. the equation that describes ion motion in a hyperbolic ion trap (HIT). Because of the similarities in the equations of motion for the two traps, and since the stable region for a HIT is well known, the HIT is used as a guide for the determination of the CIT's stable region. The HIT stability region is determined by numerical calculations for comparisons with the analytic HIT stable region in order to test the validity of the numerical method. In this investigation, the ion kinetic energy is found to influence the shape of the CIT's stable region. The locations of the CIT's βz=0 and βr=0 stability boundaries, i.e. for unstable trajectories in the axial and radial directions respectively, are experimentally determined through measuring the number density of N+ at multiple locations in the stability diagram. The experimentally determined boundaries for βz=0 and βr=0 are found to lie consistently between the 0.01eV and 0.1eV numerically calculated energy dependent boundaries for the CIT.
Keywords
Cylindrical ion trap; Mathieu equation; Paul trap; Quadrupoles; Stability; TOF
Disciplines
Physics
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Clarke, Bradley Steven, "Numerical and Experimental Investigation of the Stability Region for a Cylindrical Ion Trap" (2012). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1660.
http://dx.doi.org/10.34917/4332641
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/