Award Date
December 2016
Degree Type
Thesis
Degree Name
Master of Science (MS)
Department
Geoscience
First Committee Member
Terry L. Spell
Second Committee Member
Rodney V. Metcalf
Third Committee Member
Shichun Huang
Fourth Committee Member
Dennis Bazylinski
Number of Pages
161
Abstract
The Jemez volcanic field (JVF), New Mexico, is a caldera-forming volcanic field located at the junction of the Rio Grande Rift and the Jemez Lineament. The JVF is one of three large North American caldera-forming systems, including Long Valley, California and Yellowstone Plateau volcanic field, Wyoming, which have been active during the Quaternary. Because portions of the JVF are unusually well preserved, it offers a rare opportunity to study how such systems develop. Insight into the history of caldera-forming systems will contribute to the understanding of their potential future behavior. In the case of Yellowstone and Long Valley, that insight could contribute to more accurate prediction of the future activity of these two potentially active systems. This research focuses on the nature of the Canovas Canyon Rhyolite (CCR). These domes and flows were the product of the first significant rhyolitic volcanism in the JVF, beginning about 13 Ma (Gardner, et al., 1986). Timing of the eruptions; over a ~4 Ma time period, as well as the areal extent (more than 50 km2), make it unlikely that the CCR was produced by one long lived magma system.
Models which describe the formation of silicic caldera-forming systems can be broadly grouped into two categories: A. Those which postulate large, thermally stable, long lived magma bodies which develop chemical and thermal gradients, such as the model developed by Hildreth, (1981) and Halliday, et al., (1989); B. Models in which silicic volcanism is produced by smaller, individual batches of melt (Huppert and Sparks, 1988b). In the second type of model, caldera-forming magma chambers are ephemeral and only occur in the last stage of development of the system, prior to the culminating eruption.
Major and trace element geochemistry trends rule out any of the sampled units having been produced by the same magma system. Nd, Sr, and Pb isotope ratios indicate that the CCR are products of fractional crystallization of associated basalts, with up to 50% crustal assimilation. The CCR best fits model B; a rhyolite produced in small, ephemeral, independent magma systems.
Keywords
Canovas Canyon Rhyolite; Jemez Mountains Volcanic Field; Keres Group; rhyolite
Disciplines
Geology
File Format
Degree Grantor
University of Nevada, Las Vegas
Language
English
Repository Citation
Padmore, Penelope Marie, "Canovas Canyon Rhyolites, Jemez Volcanic Field, New Mexico: Discrete Source Magmas, or a Potential Caldera Forming Magma System?" (2016). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2892.
http://dx.doi.org/10.34917/10083200
Rights
IN COPYRIGHT. For more information about this rights statement, please visit http://rightsstatements.org/vocab/InC/1.0/